Adipocyte-specific overexpression of FOXC2 prevents diet-induced increases in intramuscular fatty acyl CoA and insulin resistance.

نویسندگان

  • Jason K Kim
  • Hyo-Jeong Kim
  • So-Young Park
  • Anna Cederberg
  • Rickard Westergren
  • Daniel Nilsson
  • Takamasa Higashimori
  • You-Ree Cho
  • Zhen-Xiang Liu
  • Jianying Dong
  • Gary W Cline
  • Sven Enerback
  • Gerald I Shulman
چکیده

Insulin resistance plays a major role in the development of type 2 diabetes and may be causally associated with increased intracellular fat content. Transgenic mice with adipocyte-specific overexpression of FOXC2 (forkhead transcription factor) have been generated and shown to be protected against diet-induced obesity and glucose intolerance. To understand the underlying mechanism, we examined the effects of chronic high-fat feeding on tissue-specific insulin action and glucose metabolism in the FOXC2 transgenic (Tg) mice. Whole-body fat mass were significantly reduced in the FOXC2 Tg mice fed normal diet or high-fat diet compared with the wild-type mice. Diet-induced insulin resistance in skeletal muscle of the wild-type mice was associated with defects in insulin signaling and significant increases in intramuscular fatty acyl CoA levels. In contrast, FOXC2 Tg mice were completely protected from diet-induced insulin resistance and intramuscular accumulation of fatty acyl CoA. High-fat feeding also blunted insulin-mediated suppression of hepatic glucose production in the wild-type mice, whereas FOXC2 Tg mice were protected from diet-induced hepatic insulin resistance. These findings demonstrate an important role of adipocyte-expressed FOXC2 on whole-body glucose metabolism and further suggest FOXC2 as a novel therapeutic target for the treatment of insulin resistance and type 2 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle.

Insulin resistance in skeletal muscle plays a major role in the development of type 2 diabetes and may be causally associated with increases in intramuscular fatty acid metabolites. Fatty acid transport protein 1 (FATP1) is an acyl-CoA synthetase highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism by converting fatty acids into fatty acyl-CoA. To investigate the r...

متن کامل

Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.

A reduced capacity for mitochondrial fatty acid oxidation in skeletal muscle has been proposed as a major factor leading to the accumulation of intramuscular lipids and their subsequent deleterious effects on insulin action. Here, we examine markers of mitochondrial fatty acid oxidative capacity in rodent models of insulin resistance associated with an oversupply of lipids. C57BL/6J mice were f...

متن کامل

Overexpression of Carnitine Palmitoyltransferase-1 in Skeletal Muscle Is Sufficient to Enhance Fatty Acid Oxidation and Improve High-Fat Diet–Induced Insulin Resistance

OBJECTIVE Skeletal muscle insulin resistance is associated with lipid accumulation, but whether insulin resistance is due to reduced or enhanced flux of long-chain fatty acids into the mitochondria is both controversial and unclear. We hypothesized that skeletal muscle-specific overexpression of the muscle isoform of carnitine palmitoyltransferase 1 (CPT1), the enzyme that controls the entry of...

متن کامل

FOXC2 Is a Winged Helix Gene that Counteracts Obesity, Hypertriglyceridemia, and Diet-Induced Insulin Resistance

Obesity, hyperlipidemia, and insulin resistance are common forerunners of type 2 diabetes mellitus. We have identified the human winged helix/forkhead transcription factor gene FOXC2 as a key regulator of adipocyte metabolism. Increased FOXC2 expression, in adipocytes, has a pleiotropic effect on gene expression, which leads to a lean and insulin sensitive phenotype. FOXC2 affects adipocyte met...

متن کامل

A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction

OBJECTIVE Regulation of fatty acid (FA) metabolism is central to adipocyte dysfunction during diet-induced obesity (DIO). Long-chain acyl-CoA synthetase-4 (ACSL4) has been hypothesized to modulate the metabolic fates of polyunsaturated FA (PUFA), including arachidonic acid (AA), but the in vivo actions of ACSL4 are unknown. The purpose of our studies was to determine the in vivo role of adipocy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 54 6  شماره 

صفحات  -

تاریخ انتشار 2005